Prove that :-
(tan θ + sec θ - 1)/(tan θ - sec θ + 1) = (1 + sin θ)/cos θ
Answers
L.H.S = (tan θ + sec θ - 1)/(tan θ - sec θ + 1)
= [(tan θ + sec θ) - (sec²θ - tan²θ)]/(tan θ - sec θ + 1)
- [» sec²θ - tan²θ = 1]
= {(tanθ+secθ) - (secθ+tanθ) (secθ-tanθ)}/(tanθ-sec θ + 1)
= {(tan θ + sec θ) (1 - sec θ + tan θ)}/(tan θ - sec θ + 1)
= {(tan θ + sec θ) (tan θ - sec θ + 1)}/(tan θ - sec θ + 1)
= tan θ + sec θ
= (sin θ/cos θ) + (1/cos θ)
= (sin θ + 1)/cos θ
= (1 + sin θ)/cos θ = R.H.S Proved.
==================================
==================================
Here, i am holding the "THETAS" as "A".
So, we can proceed our solution as under
=
(tan A + sec A - 1)/(tan A - sec A + 1)
= (tan A + sec A - sec²A + tan²A)/(tan A - sec A + 1)
= [tan A + sec A - {(sec A+tan A) (sec A - tan A)}]/[tan A - sec A + 1]
= [tan A + sec A (1 - sec A + tan A)]/(tan A - sec A + 1)
= tan A + sec A
= sin A/cos A + 1/cos A
= ( 1 + sin A ) / cos A
=
==================================
ULTIMATELY,
L.H.S. = R.H.S. (PROVED)
==================================