prove that [(tanθ+sinθ+1)(tanθ-secθ+1)]/tanθ=2
lekhahasa:
whole is divided by tan theta
Answers
Answered by
1
(1+cot Z-csc Z) (1+tan Z +sec Z)
= 1 + tan Z + sec Z
+ cot Z + 1 + cot Z*sec Z
- csc Z - csc Z*tan Z - csc Z*sec Z
o = opposite, a = adjacent, h = hypoteneuse
cot Z * sin Z = (a/o)*(h/a) = h/o = csc Z
csc Z*tan Z = (h/o)*(o/a) = h/a = sec Z
csc Z*sec Z = (h/o)*(h/a)
= 1 + tan Z + sec Z
+ cot Z + 1 + csc Z
- csc Z - sec Z - csc Z*sec Z
= 1 + tan Z
+ cot Z + 1
- csc Z*sec Z
= 2 + tan Z + cot Z - csc Z*sec Z
= 2 + o/a + a/o - (h/o)*(h/a)
= 2 + (o^2 + a^2 - h^2)/(a*o)
Pythagoras...
= 2 <<<<<.......
Please mark it as brainiest answer .........
= 1 + tan Z + sec Z
+ cot Z + 1 + cot Z*sec Z
- csc Z - csc Z*tan Z - csc Z*sec Z
o = opposite, a = adjacent, h = hypoteneuse
cot Z * sin Z = (a/o)*(h/a) = h/o = csc Z
csc Z*tan Z = (h/o)*(o/a) = h/a = sec Z
csc Z*sec Z = (h/o)*(h/a)
= 1 + tan Z + sec Z
+ cot Z + 1 + csc Z
- csc Z - sec Z - csc Z*sec Z
= 1 + tan Z
+ cot Z + 1
- csc Z*sec Z
= 2 + tan Z + cot Z - csc Z*sec Z
= 2 + o/a + a/o - (h/o)*(h/a)
= 2 + (o^2 + a^2 - h^2)/(a*o)
Pythagoras...
= 2 <<<<<.......
Please mark it as brainiest answer .........
Answered by
2
(1+cotθ-cosecθ) (1+tanθ +secθ)
= 1 + tanθ + secθ + cotθ + cotθtanθ + cotθsecθ - cosecθ - tanθcosecθ - secθcosecθ
Now we know that cotθtanθ = 1 and cotθsecθ = cosecθ and tanθcosecθ = secθ
= 1 + tanθ + secθ + cotθ + 1 + cosecθ - cosecθ - secθ - secθcosecθ
= 1+ tanθ + cotθ + 1 - secθcosecθ
= 2 + [tanθ + cotθ - secθcosecθ]
= 2 + [sinθ/cosθ + cosθ/sinθ - secθcosecθ]
= 2+ [(sin^2θ + cos^2θ)/sinθcosθ - secθcosecθ]
Or
(1+cotθ-cosecθ) (1+tanθ +secθ)
= (1+ cosθ/sinθ - 1/sinθ) (1+ sinθ/cosθ + 1/cosθ)
= 1/sinθ[sinθ + cosθ -1] * 1/cosθ[sinθ + cosθ +1]
= 1/sinθcosθ [(sinθ + cosθ)^2 - 1]
= 1/sinθcosθ[sin^2θ + 2sinθcosθ + cos^2θ -1]
Using the identity sin^2θ + cos^2θ = 1
= 1/sinθcosθ[1 + 2sinθcosθ -1]
= 2sinθcosθ/sinθcosθ
= 2
Now using the identity sin^2θ + cos^2θ =1
= 2+ [1/sinθcosθ - secθcosecθ]
= 2 + secθcosecθ - secθcosecθ
=2
HOPE IT HELP MY FRIEND
= 1 + tanθ + secθ + cotθ + cotθtanθ + cotθsecθ - cosecθ - tanθcosecθ - secθcosecθ
Now we know that cotθtanθ = 1 and cotθsecθ = cosecθ and tanθcosecθ = secθ
= 1 + tanθ + secθ + cotθ + 1 + cosecθ - cosecθ - secθ - secθcosecθ
= 1+ tanθ + cotθ + 1 - secθcosecθ
= 2 + [tanθ + cotθ - secθcosecθ]
= 2 + [sinθ/cosθ + cosθ/sinθ - secθcosecθ]
= 2+ [(sin^2θ + cos^2θ)/sinθcosθ - secθcosecθ]
Or
(1+cotθ-cosecθ) (1+tanθ +secθ)
= (1+ cosθ/sinθ - 1/sinθ) (1+ sinθ/cosθ + 1/cosθ)
= 1/sinθ[sinθ + cosθ -1] * 1/cosθ[sinθ + cosθ +1]
= 1/sinθcosθ [(sinθ + cosθ)^2 - 1]
= 1/sinθcosθ[sin^2θ + 2sinθcosθ + cos^2θ -1]
Using the identity sin^2θ + cos^2θ = 1
= 1/sinθcosθ[1 + 2sinθcosθ -1]
= 2sinθcosθ/sinθcosθ
= 2
Now using the identity sin^2θ + cos^2θ =1
= 2+ [1/sinθcosθ - secθcosecθ]
= 2 + secθcosecθ - secθcosecθ
=2
HOPE IT HELP MY FRIEND
Similar questions