Math, asked by Nike6218, 1 month ago

Prove that tan(sin^-1 X)=x/✓1-x^2

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

\tt{Let\,\,\,sin^{-1}(x)=\theta}

\sf{\implies\,x=sin(\theta)}

Now,

\sf{cos(\theta)=\sqrt{1-sin^{2}(\theta)}=\sqrt{1-x^2}}

So,

\sf{tan(\theta)=\dfrac{sin(\theta)}{cos(\theta)}=\dfrac{x}{\sqrt{1-x^2}}}

\sf{\implies\,tan(\theta)=\dfrac{x}{\sqrt{1-x^2}}}

\sf{\implies\,tan\big(sin^{-1}(x)\big)=\dfrac{x}{\sqrt{1-x^2}}}

Similar questions