Prove that (tanθ+sinθ) / (tanθ−sinθ) = (secθ+1) / (secθ−1)
Answers
Answered by
0
Step-by-step explanation:
tan theta convert into sin theta/ cos theta
then rationalization.
I have solved this question on copy but how can i upload on brainly app
Answered by
3
ANSWER
tanθ−sinθ
tanθ+sinθ
=
secθ−1
secθ+1
L.H.S=
tanθ−sinθ
tanθ+sinθ
=
cosθ
sinθ
−
1
sinθ
cosθ
sinθ
+
1
sinθ
=
cosθ
sinθ−sinθ.cosθ
cosθ
sinθ+sinθ.cosθ
=
sinθ−sinθ.cosθ
sinθ+sinθ.cosθ
=
sinθ(1−cosθ)
sinθ(1+cosθ)
=
1−
secθ
1
1+
secθ
1
=
secθ−1
secθ+1
L.H.S=R.H.SProved.
R.H.S=
tanθ−sinθ
tanθ+sinθ
=
sinθ(
sinθ
tanθ
−1)
sinθ(
sinθ
tanθ
+1)
=
cosθ.sinθ
sinθ
−1
cosθ.sinθ
sinθ
+1
=
cosθ
1
−1
cosθ
1
+1
=
secθ−1
secθ+1
L.H.S=R.H.Sproved.
I hope it will help you and please mark me Brainlist
Similar questions