Math, asked by ravindranath7, 10 months ago

prove that tan square a minus sin square equal to tan square a into sin square​

Answers

Answered by Davidsouza
10

Step-by-step explanation:

 { \tan }^{2} a -  { \sin }^{2} a =  { \tan }^{2} a \times  { \sin }^{2}a \\  \frac{ { \sin}^{2}a }{ { \cos }^{2} a}  -  { \sin }^{2} a = { \tan }^{2} a \times  { \sin }^{2}a \: \\  \\  \frac{ { \sin }^{2}a(1 -  { \cos }^{2}a)  }{ { \cos}^{2}a }  = { \tan }^{2} a \times  { \sin }^{2}a

 { \ \tan  }^{2}a \times  { \sin}^{2}a =   { \ \tan  }^{2}a \times  { \sin}^{2}a \:

Identity used:

 { \sin}^{2} a +  { \cos }^{2} a = 1

Please mark this answer as the brainliest

May The Force Be With You

Answered by Anonymous
2

tep-by-step explanation:

Consider the provided information.

\sin^2A\cos^2B-\cos^2A\sin^2B=\sin^2A-\sin^2B

Consider the LHS.

\sin^2A\cos^2B-\cos^2A\sin^2B

\sin^2A(1-\sin^2B)-(1-\sin^2A)\sin^2B               (∴\cos^2x=1-\sin^2x)

\sin^2A-\sin^2A\sin^2B-\sin^2B+\sin^2A\sin^2B

\sin^2A-\sin^2B

Hence, proved.

Step-by-step explanation:

Similar questions