prove that tan squared theta by 1 + tan squared theta + cot square theta by 1 + cot square theta is equal to 1
Answers
Answered by
18
Answer:
(The question is wrong).
Step-by-step explanation:
Proof:
L.H.S.
=(tan^2 teta/1 + tan^2 teta) (cot^2 teta/1 + cot^2 teta)
=(tan^2 teta + tan^2 teta )(cot^2 teta + cot^2 teta)
=(2 tan ^2 teta ) (2 cot^2 teta)
[cot^2 teta = 1/tan^2 teta]
= 2 tan ^2 teta × 1/ 2tan^2 teta
= 1
=R.H.S.
Answered by
66
Question
Prove that tan²Ø/(1 + tan²Ø) + cot²Ø/(1 + cot²Ø) = 1
To Prove
tan²Ø/(1 + tan²Ø) + cot²Ø/(1 + cot²Ø) = 1
Proof
Take L.H.S.
⇒ tan²Ø/(1 + tan²Ø) + cot²Ø/(1 + cot²Ø)
Used identity: 1 + tan²Ø = sec²Ø and 1 + cot²Ø = cosec²Ø
⇒ tan²Ø/sec²Ø + cot²Ø/cosec²Ø
Also, tanØ = sinØ/cosØ, secØ = 1/cosØ, cotØ = cosØ/sinØ and cosecØ = 1/sinØ
⇒
⇒
⇒ sin²Ø + cos²Ø
We know that sin²Ø + cos²Ø = 1
⇒ 1
L.H.S. = R.H.S.
Hence, proved.
Similar questions
Science,
5 months ago
Geography,
5 months ago
India Languages,
11 months ago
Geography,
11 months ago
Chemistry,
1 year ago
Social Sciences,
1 year ago