Math, asked by pd1503, 11 months ago

Prove that:tan θ/tan(90°- θ)+sin(90°- θ)/cosθ=sec^2 θ​

Answers

Answered by Anonymous
6

Hey! Your answer refers to attachment :)

Attachments:
Answered by Anonymous
4

 \boxed{ \bold{ \huge{ \sf{ \orange{Answer}}}}} \\  \\  \star \sf \: To \: Prove \\  \\  \implies \sf \:   \frac{ \tan \theta }{ \tan(90 -  \theta) }  +  \frac{ \sin(90 -  \theta)}{ \cos\theta }  =   {  \sec }^{2} { \theta} \\  \\  \star \sf \: Formula \\  \\  \implies \sf \:  \tan(90 -  \theta)  =  \cot\theta \\  \\  \implies \sf \:  \sin(90 -  \theta)  =  \cos \theta \\  \\  \implies \sf \:  \frac{ \tan \theta}{ \cot \theta }  =   { \tan }^{2} { \theta} \\  \\  \star \sf \: Step \: by \: Step \: Explanation \\  \\  \implies \sf \:  \frac{ \tan \theta }{ \cot \theta}  +  \frac{ \cos \theta}{ \cos \theta}  =  { \tan }^{2} { \theta} + 1 \\  \\  \implies \sf \:  { \tan }^{2}{ \theta} + 1 =  { \sec}^{2}  { \theta} \\  \\  \therefore \:  \sf \: LHS = RHS

Similar questions