Math, asked by mischellemariyan2006, 1 month ago

prove that (tan teeetha +sec teetha-1)/(tan teetha-sec teetha+1)= 1+sin teetha/cos teetha​

Answers

Answered by tuhingenius2006
0

Answer:

To Prove:

tanθ−secθ+1

tanθ+secθ−1

=  

cosθ

1+sinθ

 

Solution:

L.H.S =  

tanθ−secθ+1

tanθ+secθ−1

 

We can write, sec  

2

θ−tan  

2

θ=1

=  

tanθ−secθ+1

tanθ+secθ−(sec  

2

θ−tan  

2

θ)

 

=  

tanθ−secθ+1

tanθ+secθ−(secθ−tanθ)(secθ+tanθ)

 

=  

tanθ−secθ+1

(tanθ+secθ){1−(secθ−tanθ)}

 

=  

tanθ−secθ+1

(tanθ+secθ){1−secθ+tanθ}

 

=tanθ+secθ

=  

cosθ

sinθ

+  

cosθ

1

 

=  

cosθ

1+sinθ

 

= R.H.S

since L.H.S = R.H.S

tanθ−secθ+1

tanθ+secθ−1

=  

cosθ

1+sinθ

 

Hence Proved.

Similar questions