prove that (tan theata ÷ 1 - cot theata + cot theata ÷ 1 - tan theata) = 1 + sec theata - cosec theata
Answers
Answered by
1
tanθ/(1 - 1/tanθ) + (1/tanθ)/(1 - tanθ)
tan²θ/(tanθ - 1) - 1/tanθ(tanθ - 1)
1/(tanθ - 1) { tan²θ - 1/tanθ }
1/(tanθ - 1) { (tan³θ - 1)/tanθ)
[as, a³ - b³ = (a - b)(a² + b² + ab)
{(tanθ - 1)(tan²θ + 1 + tanθ)}/{(tanθ - 1)(tanθ)}
tanθ + cotθ + 1
sinθ/cosθ + cosθ/sinθ + 1
(sin²θ + cos²θ)/sinθ . cosθ + 1
1/sinθ . cosθ + 1
cosecθ . secθ
Similar questions