Math, asked by saketsingh98, 1 year ago

Prove that tan theta /1+costheta+ sin theta/1-cos theta=cottheta+cosectheta*sectheta

Answers

Answered by Pitymys
3

Here

 LHS=\frac{\tan \theta}{1+\cos \theta} +\frac{\sin \theta}{1-\cos \theta} \\<br />LHS=\frac{\tan \theta(1-\cos \theta)+\sin \theta (1+\cos \theta)}{(1+\cos \theta)(1-\cos \theta)} \\<br />LHS=\sin \theta \frac{\sec \theta(1-\cos \theta)+(1+\cos \theta)}{1-\cos^2 \theta} \\<br />LHS=\sin \theta \frac{\sec \theta-1+(1+\cos \theta)}{\sin^2 \theta} \\<br />LHS=\frac{\sec \theta+\cos \theta}{\sin \theta} \\<br />LHS=\frac{\sec \theta}{\sin \theta} +\frac{\cos \theta}{\sin \theta} \\<br />LHS=\cot \theta+\csc \theta \sec \theta=RHS

The proof is complete.

Similar questions