Prove that tan theta/1-cot theta +cot theta/1-tan theta - 1 = sec theta * cosec theta
Answers
Answered by
2
Answer:
Proved
Step-by-step explanation:
let theta = ∝
tan theta/1-cot theta +cot theta/1-tan theta - 1 = sec theta * cosec theta
tan ∝/1-cot ∝ +cot ∝/1-tan ∝ - 1 = sec ∝* cosec∝
LHS = tan ∝/1-cot ∝ +cot ∝/1-tan ∝ - 1 = tan ∝/1-1/tan∝ +1/tan ∝/1-tan ∝ - 1
= tan² ∝/tan∝-1 +1/tan∝(1-tan ∝) - 1 = tan² ∝/tan∝-1 -1/tan∝(tan ∝-1) - 1
= tan³∝ - 1/tan∝(tan ∝-1) - 1 = tan²∝ +tan∝ +1 / tan∝ - 1 = tan∝ + cot∝ + 1-1
= tan∝ + cot∝ = sin∝/cos∝ + cos∝/sin∝ = sin²∝ + cos²∝/sin∝ cos∝
= 1/sin∝ cos∝ = sec ∝* cosec∝ = RHS
Answered by
0
GIVEN:-
TO FIND:-
SOLUTION:-
Similar questions