Math, asked by sabanaazmi2003p6xi5q, 1 year ago

Prove that tan theta /1-cot theta + cot theta/1- tan theta =1+ sec theta × cos theta

Answers

Answered by Ramanujmani
13
heya..!!!!


tan/1-cot∅ + cot∅/1-tan∅

=> sin∅/cos∅/(sin∅-cos∅)/sin∅ + cos∅/sin∅/(cos∅-sin∅)/cos∅

=> sin²∅/cos∅(sin∅-cos∅) + cos²∅/sin∅(cos∅-sin∅)

=> (sin³∅ - cos³∅) / sin∅cos∅(sin∅-cos∅)

=> [ (sin∅-cos∅)(sin²∅+cos²∅+sin∅cos∅) ] /sin∅cos∅(sin∅-cos∅)

=> (1+sin∅cos∅) / sin∅cos∅

=> 1/sin∅cos∅ + sin∅cos∅/sin∅cos∅

=> sec∅cosec∅ + 1

sabanaazmi2003p6xi5q: Thanks for the answer
Answered by BrainlyConqueror0901
92

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \orange {TO \: PROVE}} \\  { \pink{ \boxed{  \red{\frac{ \tan(a) }{1 -  \cot(a) }  +  \frac{  \cot(a) }{1 -  \tan(a) }  = 1 +  \sec(a)  \times  \cosec(a) }}}}

USING TRIGONOMETRIC IDENTITIES:

( \theta=a)\\\to\frac{ \tan(a) }{1 -  \cot(a) }  +  \frac{  \cot(a)  }{1 -  \tan(a) }  = 1 +  \sec(a)  \times  \cosec(a) \\  \:  \:  \:  \:  \:  \:  \:  \:  \: LHS \\  \to\frac{ \tan(a) }{1 -  \cot(a) }  +  \frac{  \cot(a) ) }{1 -  \tan(a) }   \\  \to  \frac{ \frac{ \sin(a) }{ \cos(a) } }{ 1 -  \frac{ \cos(a) }{\sin(a) } }  +  \frac{ \frac{ \cos(a) }{ \sin(a) } }{1 -  \frac{ \sin(a) }{ \cos(a) } }  \\  \to  \frac{ \frac{ \sin(a) }{ \cos(a) } }{ \frac{ \sin(a)  -   \cos(a)  }{ \sin(a) } }  +  \frac{ \frac{ \cos(a) }{ \sin(a) } }{ \frac{ \cos(a) -  \sin(a)  }{ \cos(a) } }  \\  \to \frac{ \sin ^{2} (a) }{ \cos(a) ( \sin(a) -  \cos(a) ) }  -  \frac{ \cos ^{2} (a) }{ \sin(a)( \sin(a)  -   \cos(a) )  }  \\  \to  \frac{1} {( \sin(a)  -  \cos(a)) } ( \frac{ \sin ^{2} (a) }{ \cos(a) }  -  \frac{ \cos^{2} (a) }{ \sin(a) } ) \\  \to  (\frac{1}{ \sin(a)  -  \cos(a) } )( \frac{ \sin ^{3} (a)  -  \cos ^{3} (a) }{ \sin(a)  \times  \cos(a) } ) \\  \to  (\frac{1}{ \sin(a)  -  \cos(a) } )( \frac{( \sin(a) -  \cos(a))( \sin ^{2} (a)   +  \cos ^{2} (a) +  \sin(a)   \times  \cos(a)  }{ \sin(a)  \times  \cos(a) } ) \\ \to  \frac{1 +  \sin(a) \times  \cos(a)  }{( \sin(a) \times  \cos(a)  )}  \\  \to 1 +  \sec(a)  \times  \cosec(a)  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: LHS = RHS

\huge{\pink{\boxed{\green{\underline{\sf{VERIFIED}}}}}}

_________________________________________

Similar questions