Math, asked by Kherodkarmange6078, 7 months ago

Prove that
tan theta/1+cot theta+cot theta/1+tan theta=cosec theta×sec theta-1

Answers

Answered by Tomboyish44
16

Prove that:

\Longrightarrow \sf \dfrac{tan\theta}{1 + cot \theta} + \dfrac{cot \theta}{1 + tan \theta}  = cosec \theta \times sec \theta - 1

Solution:

The RHS is in terms of cosecθ and secθ, so let's try to express the LHS in terms of cosecθ and secθ as well.

\Longrightarrow \sf \dfrac{tan\theta}{1 + cot \theta} + \dfrac{cot \theta}{1 + tan \theta}

Lets use;

➝ tanθ = sinθ/cosθ

➝ cotθ = cosθ/sinθ

\Longrightarrow \sf \dfrac{\Bigg\{\dfrac{sin\theta}{cos\theta}\Bigg\}}{1 + \Bigg\{\dfrac{cos\theta}{sin\theta}\Bigg\}} + \dfrac{\Bigg\{\dfrac{cos\theta}{sin\theta}\Bigg\}}{1 + \Bigg\{\dfrac{sin\theta}{cos\theta}\Bigg\}}

Take LCM;

\Longrightarrow \sf \dfrac{\Bigg\{\dfrac{sin\theta}{cos\theta}\Bigg\}}{\Bigg\{\dfrac{sin\theta + cos\theta}{sin\theta}\Bigg\}} + \dfrac{\Bigg\{\dfrac{cos\theta}{sin\theta}\Bigg\}}{\Bigg\{\dfrac{cos\theta + sin\theta}{cos\theta}\Bigg\}}

\Longrightarrow \sf \Bigg\{\dfrac{sin\theta}{cos\theta} \times \dfrac{sin\theta}{sin\theta + cos\theta}\Bigg\} \ + \ \Bigg\{\dfrac{cos\theta}{sin\theta} \times \dfrac{cos\theta}{sin\theta + cos\theta}\Bigg\}

\Longrightarrow \sf \dfrac{sin^{2} \theta}{cos\theta\Big[sin\theta + cos\theta\Big]} \ + \ \dfrac{cos^{2} \theta}{sin\theta\Big[sin\theta + cos\theta\Big]}

\Longrightarrow \sf \dfrac{1}{sin\theta + cos\theta} \Bigg[\dfrac{sin^{2} \theta}{cos\theta} \ + \ \dfrac{cos^{2} \theta}{sin\theta}\Bigg]

\Longrightarrow \sf \dfrac{1}{sin\theta + cos\theta} \Bigg[\dfrac{sin^{3}\theta + cos^{3}\theta}{cos\theta \ sin\theta}\Bigg]

Use a³ + b³ = (a + b)(a² - ab + b²) where; a ➝ sinθ & b ➝ cosθ

\Longrightarrow \sf \dfrac{1}{sin\theta + cos\theta} \Bigg[\dfrac{\big(sin\theta + cos\theta\big) \big(sin^{2}\theta - sin\theta \ cos\theta + cos^{2}\theta\big)}{cos\theta \ sin\theta}\Bigg]

Use sin²θ + cos²θ = 1.

\Longrightarrow \sf \dfrac{1}{sin\theta + cos\theta} \Bigg[\dfrac{\big(sin\theta + cos\theta\big) \big(1 - sin\theta \ cos\theta\big)}{cos\theta \ sin\theta}\Bigg]

Cancel (sinθ + cosθ).

\Longrightarrow \sf \dfrac{1 - sin\theta \ cos\theta}{cos\theta \ sin\theta}

\Longrightarrow \sf \dfrac{1}{cos\theta \ sin\theta} - \dfrac{sin\theta \ cos\theta}{cos\theta \ sin\theta}

\Longrightarrow \sf \dfrac{1}{cos\theta \ sin\theta} - 1

\Longrightarrow \sf \dfrac{1}{cos\theta} \times \dfrac{1}{sin\theta} - 1

Using the below values we get:

➝ 1/cosθ = secθ

➝ 1/sinθ = cosecθ

\Longrightarrow \sf sec\theta \times cosec\theta - 1

\Longrightarrow \sf cosec\theta \times sec\theta - 1

LHS = RHS

Hence proved.


MisterIncredible: Mind-blowing ! . I am just speechless .
Tomboyish44: Thank you MisterIncredible! :D
Similar questions