Math, asked by pratibhajaiswal, 1 year ago

Prove that - TAN theta - cos theta / sin theta×cos theta = tan^2 theta - cos^ theta


nobel: some error in the question
pratibhajaiswal: No

Answers

Answered by amitnrw
0

Given      \dfrac{\tan \theta - \cot \theta}{\sin \theta \cdot \cos\theta} =  \tan^2 \theta - \cot^2 \theta

To Find : Prove

Solution:

\dfrac{\tan \theta - \cot \theta}{\sin \theta \cdot \cos\theta} =  \tan^2 \theta - \cot ^2 \theta

RHS = \tan^2 \theta - \cot ^2 \theta

= \dfrac{\sin^2 \theta}{\cos^2 \theta} -  \dfrac{\cos^2 \theta}{\sin^2 \theta}

= \dfrac{\sin^4 \theta - \cos^4 \theta}{\cos^2 \theta\sin^2 \theta}

= \dfrac{(\sin^2 \theta + \cos^2 \theta)(\sin^2 \theta - \cos^2 \theta)}{\cos^2 \theta\sin^2 \theta}

= \dfrac{1(\sin^2 \theta - \cos^2 \theta)}{\cos^2 \theta \sin^2 \theta}

= \dfrac{ \sin^2 \theta - \cos^2 \theta }{\cos \theta \sin \theta\cos \theta \sin  \theta}

=\dfrac{1}{\cos \theta \sin \theta} \left( \dfrac{ \sin^2 \theta - \cos^2 \theta }{\\cos \theta \sin  \theta} \right)

=\dfrac{1}{\cos \theta \sin \theta} \left( \dfrac{ \sin^2 \theta }{\\cos \theta \sin  \theta} - \dfrac{ \cos^2 \theta }{\\cos \theta \sin  \theta} \right)

=\dfrac{1}{\cos \theta \sin \theta} \left( \dfrac{\sin  \theta }{\cos \theta } - \dfrac{ \cos  \theta }{\sin  \theta} \right)

=\dfrac{1}{\cos \theta \sin \theta} \left(\tan \theta } -\cot \theta} \right)

=\dfrac{\tan \theta -\cot \theta}{\cos \theta \sin \theta}

= LHS

 \dfrac{\tan \theta - \cot \theta}{\sin \theta \cdot \cos\theta} =  \tan^2 \theta - \cot^2 \theta

QED

HENCE PROVED

Learn more:

prove that tan theta + cot theta the whole square is equal to sec ...

https://brainly.in/question/12238613

sin2 A.tanA + cos2 A.cotA +2sinA.cosA = tanA + cot A prove it ...

https://brainly.in/question/5003193

Similar questions