Prove that tan theta - cot theta = cosec theta
Answers
Answered by
0
tan x + cot x = sec x csc x
LHS = sin x / cos x + cos x / sin x
= (sin^2 x + cos^2 x)/(sin x cos x)
= 1/(sin x * cos x)
= sec x csc x = RHS
Another method; tan(theta)+cot(theta)
=> sin(theta)/cos(theta) + cos((theta)/sin(theta)
=> [sin(theta)*sin(theta)+ cos(theta) * cos(theta)]/sin(theta)cos(theta)
=> [sin^2(theta) + cos^2(theta)]/sin(theta)cos(theta)
Now we know that sin^2(theta) + cos^2(theta) =1 [Identity]
=> 1/sin(theta)cos(theta)
= 1/sin(theta) * 1/cos(theta)
= sec(theta)cosec(theta)
Similar questions