prove that tan theta + cot theta= sec theta × cosec theta
Answers
Answered by
1
Answer:
cotθ+tanθ=cosecθ×secθ
Answer:
cot\theta + tan\theta = cosec \theta \times sec \thetacotθ+tanθ=cosecθ×secθ
LHS is
Cot \theta + tan \theta= \frac {cos \theta }{sin \theta }+ \frac {sin \theta }{ cos \theta }Cotθ+tanθ=
sinθ
cosθ
+
cosθ
sinθ
= \frac {cos^{2} \theta + sin^{2} \theta}{ sin \theta \times cos \theta}=
sinθ×cosθ
cos
2
θ+sin
2
θ
Therefore cos^{2} \theta + sin^{2} \theta = 1cos
2
θ+sin
2
θ=1
= \frac {1}{ sin \theta \times cos \theta}=
sinθ×cosθ
1
= \frac {1}{ sin \theta} \times \frac {1}{ cos \theta}=
sinθ
1
×
cosθ
1
Therefore,
cot \theta +tan \theta =cosec \theta \times sec \thetacotθ+tanθ=cosecθ×secθ
Hence proved.
Answered by
4
Answer:
See the photo for your answer...
FOLLOW ME !!!!
Attachments:
Similar questions