Math, asked by savitha1145, 1 year ago

Prove that (tan theta-cot theta) / (sin theta * cos theta)=(tan² theta-cot² theta)


Answers

Answered by gorabhalu
212
this is the answer in the attached file
Attachments:
Answered by karthik4297
168
 \frac{tan@-cot@}{sin@.cos@}=  tan^{2}@- cot^{2}@
LHS=  \frac{tan@-cot@}{sin@.cos@} =  \frac{tan@- \frac{1}{tan@} }{sin@.cos@}
= \frac{ tan^{2}@-1 }{tan@.sin@.cos@} =   \frac{ tan^{2}@-1 }{tan@ \frac{sin@}{cos@} .cos@.cos@}
= \frac{( tan^{2}@-1) sec^{2}@  }{ tan^{2}@ }  =  \frac{( tan^{2}@-1)( tan^{2}@+1)  }{ tan^{2}@ }
=  \frac{ tan^{4}@-1 }{ tan^{2}@ } =  \frac{ tan^{4}@ }{ tan^{2}@ } - \frac{1}{ tan^{2}@ }
= tan^{2}@- cot^{2}@ = R.H.s
Similar questions