Math, asked by abdulraseen, 5 months ago

prove that
tan theta - cot theta / sin theta cos theta = tan²theta - cot²theta​

Answers

Answered by nra24mafia7
2

Step-by-step explanation:

the answer has been attached

Attachments:
Answered by anjalica62
1

Answer:

                                 \frac{tan theta - cot theta }{sin theta.cos theta} = tan^{2}Ф - cot^{2} Ф

L.H.S = \frac{tan theta - cot theta}{sin theta.cos theta}

         = \frac{tan theta \frac{1}{tan theta} }{sin theta.cos theta}

        = \frac{tan^{2} theta - 1}{tan theta.sin theta.cos theta}

        = \frac{tan^{2} theta - 1 }{tan theta.\frac{sin theta}{cos theta}.cos theta. cos theta}

        =  \frac{(tan^{2} theta - 1) sec^{2} theta }{tan^{2} theta}  

        = \frac{(tan^{2} theta - 1)(tan^{2} theta + 1 ) }{tan^{2} theta}

        = \frac{tan^{4} theta - 1}{tan^{2} theta}  

       = \frac{tan^{4} theta }{tan^{2} theta } - \frac{1}{tan^{2} theta }

       = tan^{2}Ф - cot^{2}Ф = R.H.S

Hope this helps you!!

Similar questions