Prove that : tan theta + sec theta = 1/sec theta - tan theta
First understanding answer will be marked as the branlilast
Answers
Answered by
1
Step-by-step explanation:
To prove tanθ+secθ = 1 / (secθ-tanθ)
take LHS = tanθ + secθ
= (tanθ + secθ) [ (secθ-tanθ)/(secθ-tanθ)]
= [ (secθ+tanθ) (secθ-tanθ)] / (secθ-tanθ)
= (sec²θ-tan²θ) / (secθ-tanθ)
= 1/(secθ-tanθ) [ ∵ sec²θ-tan²θ = 1 ]
= RHS
LHS = RHS
hence proved
Answered by
1
Answer:
LHS = tanθ + secθ
= (tanθ + secθ) [ (secθ-tanθ)/(secθ-tanθ)]
= [(secθ+tanθ) (secθ-tanθ)] / (secθ-tanθ)
= (sec²θ-tan²θ) / (secθ-tanθ)
= 1/(secθ-tanθ) [ ∵ sec²θ-tan²θ = 1 ]
= RHS
LHS = RHS
HOPE IT HELPS U :-)
AND THANK YOU FOR YOUR
STUPENDOUS !!!! ANSWER
:-)
Similar questions