prove that (tan theta/sec theta-1)-(sin theta /1+cos theta)=2cot theta
Answers
GIVEN :
The equation is \frac{tan\theta}{sec\theta-1}-\frac{sin\theta}{1+cos\theta}=2cot\theta
secθ−1
tanθ
−
1+cosθ
sinθ
=2cotθ
TO PROVE :
The given equation \frac{tan\theta}{sec\theta-1}-\frac{sin\theta}{1+cos\theta}=2cot\theta
secθ−1
tanθ
−
1+cosθ
sinθ
=2cotθ is true
SOLUTION :
From the given equation is true
That is prove that LHS = RHS
Now taking LHS
\frac{tan\theta}{sec\theta-1}-\frac{sin\theta}{1+cos\theta}
secθ−1
tanθ
−
1+cosθ
sinθ
By using the trignometric identity :
secx=\frac{1}{cosx}secx=
cosx
1
=\frac{\frac{sin\theta}{cos\theta}}{\frac{1}{cos\theta}-1}-\frac{sin\theta}{1+cos\theta}=
cosθ
1
−1
cosθ
sinθ
−
1+cosθ
sinθ
=\frac{\frac{sin\theta}{cos\theta}}{\frac{1-cos\theta}{cos\theta}}-\frac{sin\theta}{1+cos\theta}=
cosθ
1−cosθ
cosθ
sinθ
−
1+cosθ
sinθ
=\frac{sin\theta}{cos\theta}}\times (\frac{cos\theta}{1-cos\theta})-\frac{sin\theta}{1+cos\theta}
=\frac{sin\theta}{1-cos\theta}-\frac{sin\theta}{1+cos\theta}=
1−cosθ
sinθ
−
1+cosθ
sinθ
=\frac{sin\theta(1+cos\theta)-sin\theta(1-cos\theta)}{(1-cos\theta)(1+cos\theta)}=
(1−cosθ)(1+cosθ)
sinθ(1+cosθ)−sinθ(1−cosθ)
By using the algebraic identity :
(a+b)(a-b)-a^2-b^2(a+b)(a−b)−a
2
−b
2
=\frac{sin\theta+sin\theta cos\theta-sin\theta+sin\theta cos\theta}{1^2-cos^2\theta}=
1
2
−cos
2
θ
sinθ+sinθcosθ−sinθ+sinθcosθ
Adding the like terms
=\frac{2sin\theta cos\theta}{sin^2\theta}=
sin
2
θ
2sinθcosθ
=2(\frac{cos\theta}{sin\theta})=2(
sinθ
cosθ
)
By using the trignometric identity :
cotx=\frac{cos}{sinx}cotx=
sinx
cos
=2cot\theta=2cotθ =RHS
∴ LHS = RHS
∴ the equation \frac{tan\theta}{sec\theta-1}-\frac{sin\theta}{1+cos\theta}=2cot\theta
secθ−1
tanθ
−
1+cosθ
sinθ
=2cotθ is true
Hence proved.