Math, asked by sivanigontu6221, 7 months ago

prove that (tan theta +sec theta -1 ).(tan theta +1+sec theta) = 2sintheta/1-sintheta

Answers

Answered by Anonymous
5

Question

 \rm \:  : \implies( \tan\theta +  \sec\theta - 1) \times ( \tan\theta + 1 +  \sec\theta) =  \dfrac{2 \sin\theta}{1 -  \sin\theta }

Solution:-

Given

\rm \:  : \implies( \tan\theta +  \sec\theta - 1) \times ( \tan\theta + 1 +  \sec\theta)

We have to prove

  : \implies  \dfrac{2 \sin\theta}{1 -  \sin\theta }

Use this trigonometry identity

 \to  \tan\theta =  \dfrac{ \sin \theta }{ \cos \theta}

 \to \sec \theta=  \dfrac{1}{ \cos \theta }

Now put the value

   \rm :  \implies  \bigg( \rm \: \dfrac{ \sin\theta}{ \cos \theta  }  +  \dfrac{1}{ \cos\theta }   - 1 \bigg) \times  \bigg(\rm \: \dfrac{ \sin\theta}{ \cos \theta  }  +  \dfrac{1}{ \cos\theta }    +  1 \bigg)

Taking lcm

 \rm : \implies  \bigg( \dfrac{ \sin\theta+ 1 -  \cos \theta }{ \cos\theta  }   \bigg)  \bigg( \dfrac{ \sin\theta+ 1  +  \cos \theta }{ \cos\theta  }   \bigg)

  \rm : \implies \dfrac{ ( \sin \theta -  \cos \theta + 1)( \sin \theta + 1 +  \cos \theta)   }{ \cos {}^{2} \theta}

 \rm \:  : \implies  \dfrac{ \sin {}^{2}  \theta +  \sin\theta +  \cos \theta \times  \sin\theta - cos \theta \times  \sin\theta -  \cos \theta -  \cos {}^{2}  \theta  +  \sin \theta  + 1 +  \cos \theta  }{ \cos {}^{2} \theta }

 \rm :  \implies \dfrac{ \sin {}^{2} \theta -  \cos {}^{2}  \theta +  \sin\theta -  \cos \theta +  \sin \theta + 1 +  \cos \theta }{ \cos {}^{2} \theta}

 \rm   :  \implies \dfrac{ \sin {}^{2}  \theta-  \cos {}^{2}  \theta+ 2 \sin\theta+ 1  }{ \cos {}^{2} \theta }

 \rm   :  \implies \dfrac{ \sin {}^{2}  \theta + 1-  \cos {}^{2}  \theta+ 2 \sin\theta  }{ \cos {}^{2} \theta }

 \rm   :  \implies \dfrac{ \sin {}^{2}  \theta +  \sin {}^{2}  \theta + 2 \sin\theta  }{ 1 -  \sin {}^{2}  \theta }

Use this identity

 \rm \to(a {}^{2}  - b {}^{2} ) = ( a - b)(a + b)

now

 \rm   :  \implies \dfrac{2 \sin {}^{2}  \theta  + 2 \sin\theta  }{ (1 -  \sin {}^{}  \theta)(1 +  \sin\theta)  }

\rm   :  \implies \dfrac{2 \sin {}^{}  \theta (1 + \sin\theta  )}{ (1 -  \sin {}^{}  \theta)(1 +  \sin\theta)  }

\rm   :  \implies \dfrac{2 \sin {}^{}  \theta \cancel{ (1 + \sin\theta  )}}{ (1 -  \sin {}^{}  \theta) \cancel{(1 +  \sin\theta) } }

\rm   :  \implies \dfrac{2 \sin {}^{}  \theta }{ 1 -  \sin {}^{}  \theta }

Hence proved

Similar questions