Math, asked by yathart73, 4 months ago

prove that tan theta + sec theta -1 / tan theta -sec theta +1 =cos theta/ 1 - sin theta

plz reply fast if possible

Answers

Answered by deepakkumar9254
2

Question :-

Prove that -

\frac{tan \theta + sec \theta - 1}{tan \theta - sec \theta + 1} = \frac{1-sin\theta}{cos\theta}

Solution :-

Here, L.H.S. is  \frac{tan \theta + sec \theta - 1}{tan \theta - sec \theta + 1}

and R.H.S. is  \frac{cos\theta}{1-sin\theta}

• Solving the L.H.S.,

=>\frac{tan \theta + sec \theta - 1}{tan \theta - sec \theta + 1}

Replacing 1 by sec²Ф - tan²Ф.

As, [sec²Ф - tan²Ф = 1]

=>\frac{tan \theta + sec \theta -(sec^{2} \theta - tan^{2} \theta  )}{tan \theta - sec \theta + 1}\\\\=>\frac{(sec \theta + tan \theta) - (sec \theta + tan \theta)(sec \theta - tan \theta)}{tan \theta - sec \theta + 1}\\\\=>\frac{(sec \theta + tan \theta)(1-(sec \theta - tan \theta))}{tan \theta - sec \theta + 1}\\\\=>\frac{(sec \theta + tan \theta)(1-sec \theta + tan \theta)}{tan \theta - sec \theta + 1}

Cancelling the like terms i.e., (1-secФ+tanФ)

=> sec\theta+tan\theta

We know that, [ sec\theta= \frac{1}{cos\theta} \:and\: tan\theta = \frac{sin \theta}{cos \theta} ]

So,

=> \frac{1}{cos\theta} + \frac{sin \theta}{cos \theta}

=> \frac{1-sin\theta}{cos\theta}  = R.H.S.

L.H.S. = R.H.S.

Hence proved.

More Information :-

\star cot θ = cos θ / sin θ

\star cot θ = 1 / tan θ

\star tan θ = sin θ / cos θ

\star tan θ = 1 / cos θ

\star sin² θ + cos² θ =1

\star sec² θ - tan² θ =1

Answered by Ranveerx107
2

Question :-

Prove that -

\frac{tan \theta + sec \theta - 1}{tan \theta - sec \theta + 1} = \frac{1-sin\theta}{cos\theta}

Solution :-

Here, L.H.S. is  \frac{tan \theta + sec \theta - 1}{tan \theta - sec \theta + 1}

and R.H.S. is  \frac{cos\theta}{1-sin\theta}

Solving the L.H.S.,

=>\frac{tan \theta + sec \theta - 1}{tan \theta - sec \theta + 1}

Replacing 1 by sec²Ф - tan²Ф.

As, [sec²Ф - tan²Ф = 1]

=>\frac{tan \theta + sec \theta -(sec^{2} \theta - tan^{2} \theta  )}{tan \theta - sec \theta + 1}\\\\=>\frac{(sec \theta + tan \theta) - (sec \theta + tan \theta)(sec \theta - tan \theta)}{tan \theta - sec \theta + 1}\\\\=>\frac{(sec \theta + tan \theta)(1-(sec \theta - tan \theta))}{tan \theta - sec \theta + 1}\\\\=>\frac{(sec \theta + tan \theta)(1-sec \theta + tan \theta)}{tan \theta - sec \theta + 1}

Cancelling the like terms i.e., (1-secФ+tanФ)

=> sec\theta+tan\theta

We know that, [ sec\theta= \frac{1}{cos\theta} \:and\: tan\theta = \frac{sin \theta}{cos \theta} ]

So,

=> \frac{1}{cos\theta} + \frac{sin \theta}{cos \theta}

=> \frac{1-sin\theta}{cos\theta}  = R.H.S.

L.H.S. = R.H.S.

Hence proved.

Similar questions