Math, asked by palakdhiman05, 5 months ago

prove that : tan theta + tan ( π - theta ) + cot ( π/2 + theta ) - tan (2π - theta ) = 0

Please answer this question ​

Answers

Answered by abhi569
3

⇒ tanθ + tan(π - θ) + cot(π/2 + θ) - tan(2π - θ)

⇒ tanθ + (- tanθ) + cot(π/2 - (-θ)) - tan(π - (-π+θ))

⇒ tanθ - tanθ + tan(-θ) - [-tan(-π + θ)]

⇒ tan(-θ) + tan(-(π - θ))

⇒ - tanθ - tan(π - θ)

⇒ - tanθ - [ -tanθ]

⇒ - tanθ + tanθ

⇒ 0

Identities used:

 tan(π - A) = - tanA

 cot(π/2 - A) = tanA  

  tan(-A) = - tanA

Answered by Anonymous
12

⇒ tanθ + tan(π - θ) + cot(π/2 + θ) - tan(2π - θ)

⇒ tanθ + (- tanθ) + cot(π/2 - (-θ)) - tan(π - (-π+θ))

⇒ tanθ - tanθ + tan(-θ) - [-tan(-π + θ)]

⇒ tan(-θ) + tan(-(π - θ))

⇒ - tanθ - tan(π - θ)

⇒ - tanθ - [ -tanθ]

⇒ - tanθ + tanθ

⇒ 0

\huge \bold{@DarkShadow7083 }

Similar questions