Math, asked by harshal4178, 6 hours ago

Prove that: tanɸ x(1/ tanɸ) = secɸcosecɸ

Answers

Answered by scvn0135sv
4

Answer:

LHS = RHS

Step-by-step explanation:

I attached a picture for step - by - explanation

Attachments:
Answered by Starrex
7

\large\sf\underline{To\:prove: }

ㅤㅤㅤㅤㅤ\sf{\longrightarrow tan\theta\times\left(\dfrac{1}{tan\theta}\right)=sec\theta.cosec\theta}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\large\sf\underline{Solution: }

LHS

ㅤㅤㅤㅤㅤ\sf{\longrightarrow tan\theta\times\left(\dfrac{1}{tan\theta}\right)}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{tan^2\theta+1}{tan\theta}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{sec^2\theta}{tan\theta}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{\dfrac{1}{cos^2 \theta}}{\dfrac{sin\theta}{cos\theta}}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{1}{cos\theta\times\cancel{cos\theta}}\times\dfrac{\cancel{cos\theta}}{sin\theta}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{1}{cos\theta}\times\dfrac{1}{sin\theta}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow sec\theta cosec\theta}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow RHS}

ㅤㅤㅤㅤㅤㅤ\underline{\boxed{\bf{ LHS=RHS}}}

\large\sf\underline{ Hence,\: proved!}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\large\sf\purple{\underline{ Identifies\:used:}}

ㅤㅤㅤㅤㅤ\underline{\boxed{\bf{ tan^2\theta+1=sec^2\theta}}}

ㅤㅤㅤㅤㅤㅤ\underline{\boxed{\bf{ \dfrac{1}{cos\theta}=sec\theta}}}

ㅤㅤㅤㅤㅤ\underline{\boxed{\bf{ \dfrac{1}{sin\theta}=cosec\theta}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Similar questions