Math, asked by brightxoxo6270, 10 months ago

Prove that:tan x+tan(60+x)+tan(120+x)=3

Answers

Answered by himanshusharma12221
1

Answer:

The proof is as follows:

Step 1:

Given Data:

Tan A + tan(60+A)+tan(120+A)= 3.tan3A

To Prove: LHS =RHS

Step 2:

Left hand side:

Tan A + (tan 60 + tan A)/(1-tan60.tanA) + (tan (120) + tan A )/(1-tan120.tanA)

Step 3:

\tan A+\frac{\sqrt{3}+\tan A}{1-\sqrt{3}+\tan A}+\frac{\tan A-\sqrt{3}+1}{1+\sqrt{3}+\tan A}

Step 4:

\tan A+\frac{\left.\sqrt{3}++3 \cdot \tan A+\tan A+\sqrt{3}+\tan ^{\wedge} 2 A+\tan A-\sqrt{3}+-\sqrt{3}+\tan ^{\wedge} 2 A+3 \tan A\right]}{1-3 \tan ^{\wedge} 2 A}

Step 5:

\tan A+\frac{8 \tan A}{1-3 \tan 2 A}

Step 6:

\frac{9\tan A-3\cdot\tan 3 A}{1-3\tan 2 A}

Step 7:

= 3.tan3A (Equal to RHS)

Therefore LHS=RHS

Answered by saimanaswini64
0

Answer:

Answer:

The proof is as follows:

Step 1:

Given Data:

Tan A + tan(60+A)+tan(120+A)= 3.tan3A

To Prove: LHS =RHS

Step 2:

Left hand side:

Tan A + (tan 60 + tan A)/(1-tan60.tanA) + (tan (120) + tan A )/(1-tan120.tanA)

Step 3:

\tan A+\frac{\sqrt{3}+\tan A}{1-\sqrt{3}+\tan A}+\frac{\tan A-\sqrt{3}+1}{1+\sqrt{3}+\tan A}

Step 4:

\tan A+\frac{\left.\sqrt{3}++3 \cdot \tan A+\tan A+\sqrt{3}+\tan ^{\wedge} 2 A+\tan A-\sqrt{3}+-\sqrt{3}+\tan ^{\wedge} 2 A+3 \tan A\right]}{1-3 \tan ^{\wedge} 2 A}

Step 5:

\tan A+\frac{8 \tan A}{1-3 \tan 2 A}

Step 6:

\frac{9\tan A-3\cdot\tan 3 A}{1-3\tan 2 A}

Step 7:

= 3.tan3A (Equal to RHS)

Therefore LHS=RHS

Similar questions