Math, asked by mmis6621, 8 months ago

Prove That: tan x + tan(pi/3+x) + tan(2pi/3+x) = 3 tan3x

Answers

Answered by pulakmath007
17

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

 \displaystyle \: tan \: (A + B) =  \frac{tan \: A + tan \: B}{1 - tan \: A  \: tan B }

2.

 \displaystyle \: tan \:  \frac{2\pi}{3} = tan(\pi -  \frac{\pi}{3}  ) =  - tan \:  \frac{\pi}{3}  =  -  \sqrt{3}

CALCULATION

 \displaystyle \: tan \: x +   tan(x +  \:  \frac{\pi}{3}) +  tan(x +  \:  \frac{2\pi}{3})

 = \displaystyle \:  \: tanx \:  + \frac{tan \: x + tan \:  \frac{\pi}{3} }{1 - tan \: x \: tan  \frac{\pi}{3}  } +   \frac{tan \: x + tan \:  \frac{2\pi}{3} }{1 - tan \: x \: tan  \frac{2\pi}{3}  }

 = \displaystyle \:  \: tanx \:  + \frac{tan \: x +  \sqrt{3}  }{1 -  \sqrt{3} tan \: x   } +   \frac{tan \: x  -  \sqrt{3}  }{1  +  \sqrt{3} tan \: x \:}  \:  \: (by \: \: formula  \: 2)

 =  \:   \frac{tanx(1 -  3 {tan}^{2}x) + (tanx +  \sqrt{3} ) (1   + \sqrt{3}tanx ) +  \: (tanx  -   \sqrt{3} )(1    -  \sqrt{3}tanx ) \: }{ (1 -  3  {tan}^{2}x)}

  = \:  \frac{tanx - 3 {tan}^{3} x + tanx +  \sqrt{3 }  {tan}^{2} x +  \sqrt{3} + 3tanx   -   \sqrt{3 }  {tan}^{2} x  -   \sqrt{3} +tanx+ 3tanx  }{1 - 3 {tan}^{2}x }

 = \: \displaystyle \:   \frac{3(3tanx -  {tan}^{3} x)}{1 - 3 {tan}^{2}x }

 = 3 \: tan \: 3x

Similar questions