prove that : tan (x-y) + tan (y-z) +tan (z-x) = tan (x-y) tan (y-z) tan (z+x)
Answers
Answered by
41
HELLO DEAR,
we know the formula of tan(A + B + C) is:
nos, using above formula,
putting (A = x - y , B = y - z , C = z - x)
we get,
tan{(x - y) + (y - z) + (z - x)} =
tan(x - y + y - z + z - x) =
tan0 =
[as, we know tan0° = 0]
0 =
0 = tan(x - y) + tan(y - z) + tan(z - x) - tan(x - y)*tan(y - z)*tan(z - x)
on transforming,
we get,
[tan(x - y) tan(y - z) tan(z - x) = tan(x - y) + tan(y - z) + tan(z - x).
hence,
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions