Math, asked by rowshanara1976, 10 months ago

prove that tan(y - Z) + tan(z - x) + tan(x - y) = tan(x - y).tan (y-z) tan(z-x)​

Answers

Answered by VaishnaviMohan
0

Answer:

[tan(x - y) tan(y - z) tan(z - x) = tan(x - y) + tan(y - z) + tan(z - x).

Step-by-step explanation:

May this ANSWER will help you plz mark has brainliest

Answered by saounksh
0

Step-by-step explanation:

Concepts

We know that

 \tan( \alpha   + \beta +   \gamma )  =  \frac{ \tan( \alpha ) +   \tan( \beta )   + \tan( \gamma )  -  \tan( \alpha ) \tan( \beta )   \tan( \gamma ) }{1 -  \tan( \alpha ) \tan( \beta )   -  \tan( \beta )  \tan( \gamma ) -   \tan( \gamma )  \tan( \alpha ) }

This can also be proved using the formula

 \tan( \alpha   + \beta )  =  \frac{ \tan( \alpha )  \tan( \beta ) }{1 -  \tan( \alpha )  \tan( \beta ) }

In the above formula if

 \alpha  +   \beta +  \gamma  = 0 \: \:  then

 \tan( \alpha )   + \tan( \beta )  +  \tan( \gamma )   = \tan( \alpha )  \tan( \beta )  \tan( \gamma )

Proof

If we take α = y-z

β = z-x

γ = x-y

Then α+β+γ = (y-z)+(z-x)+(x-y) = 0

Therefore, from the above discussion

 \tan(y - z)  +  \tan(z - x)   + \tan(x - y)  =  \tan(y - z)  \tan(z - x)  \tan(x - y)

Hence Proved.

Similar questions