Prove that tan10°. tan20°. tan30°. tan40°. tan50°. tan60°, tan 70°. tan80º = 1
Answers
Answered by
3
☯ To Prove,
- tan10°. tan20°. tan30°. tan40°. tan50°. tan60°, tan 70°. tan80° = 1
☯ Formula to be used,
- tan(90 - θ)° = Cotθ
☯ Solution,
LHS
tan10°. tan20°. tan30°. tan40°. tan50°. tan60°, tan 70°. tan80°
⇒ tan10° . tan20° . tan30° . tan40° . tan(90 - 50)° . tan(90 - 60)° . tan(90 - 70)° . tan(90 - 80)°
⇒ tan10° . tan20° . tan30° . tan40° . cot40°. cot30°. cot20° . cot10°
{ °.° Cancel out all }
⇒ 1
RHS
- Hence, Proved!!
Answered by
2
tan10°. tan20°. tan30°. tan40°. tan50°. tan60°, tan 70°. tan80º
we know that tan (90−θ)= cotθ
= tan10∘.tan20∘.tan30∘.tan40∘.cot40∘.cot30∘.cot20∘.cot10∘
=1...........Use tan(90o−θ)=cotθ and tanθcotθ=1
= LHS = RHS
Hence , Verified .
Similar questions
Math,
2 months ago
English,
2 months ago
Computer Science,
5 months ago
Business Studies,
11 months ago
Physics,
11 months ago
English,
11 months ago