Prove that tan13a − tan9a− tan3a = tan13a.tan9a.tan3a
Answers
Answered by
0
Answer:
Given a = 0
or, 13a–9a–3a = 0
or, tan(13a–9a–3a) = tan0
From the formula of tan(a–b–c), we got
(tan13a–tan9a–tan3a–tan13a.tan9a.tan3a)
1+tan13a.tan9a–tan9a.tan3a+tan3a.tan13a
= 0
or, tan13a–tan9a–tan3a–tan13a.tan9a.tan3a = 0
or, tan13a–tan9a–tan3a = tan13a.tan9a.tan3a (proved)
Similar questions
Science,
10 days ago
English,
20 days ago
Math,
9 months ago
Economy,
9 months ago
Computer Science,
9 months ago