prove That tan15+tan30+tan15.tan30=1
Attachments:
Answers
Answered by
1
tan (A+B) = (tanA + tanB)/(1-tanA×tanB )
here A= 30, B= 15
tan(45) = (tan30 + tan 15)/(1-tan30×tan15)
and we know that tan(45) =1
So, 1 = ( tan30 + tan 15)/(1-tan30×tan15)
Taking denominator to the Right hand side
(1-tan30×tan15) = ( tan30 + tan 15)
Hence, tan30 + tan 15+ tan30×tan15=1
here A= 30, B= 15
tan(45) = (tan30 + tan 15)/(1-tan30×tan15)
and we know that tan(45) =1
So, 1 = ( tan30 + tan 15)/(1-tan30×tan15)
Taking denominator to the Right hand side
(1-tan30×tan15) = ( tan30 + tan 15)
Hence, tan30 + tan 15+ tan30×tan15=1
iamthegreat21:
pls mark me as the brainliest
Similar questions