Prove that tan²-A - sin² A = tan²-A. sin²’A. = -
Answers
Answered by
0
Answer:
Let us first find the value of left hand side (LHS) that is tan2A−sin2A as shown below:
tan2A−sin2A=cos2Asin2A−sin2A(∵tanx=cosxsinx)=cos2Asin2A−sin2Acos2A=sin2A(cos2A1−cos2A)=cos2Asin2A(1−cos2A)=tan2Asin2A=RHS(∵tanx=cosxsinx,1−cos2x=sin2
Answered by
0
Step-by-step explanation:
Solution :-
On taking LHS :
tan² A - sin² A
=> (sin A / cos A )² - sin² A
=> ( sin² A / cos² A ) - sin² A
=> ( sin² A - sin² A cos² A) / cos² A
=> [sin² A ( 1- cos² A )] / cos² A
=> ( sin² A sin² A ) / cos² A
Since, sin² A + cos² A = 1
=> sin² A ( sin² A / cos² A )
=> sin² A tan²
=> tan² A sin² A
=> RHS
=> LHS = RHS
Hence, Proved.
Used Formulae:-
♦ tan A = sin A / cos A
♦ sin² A + cos² A = 1
Similar questions
History,
8 days ago
Math,
8 days ago
Environmental Sciences,
16 days ago
History,
9 months ago
Math,
9 months ago
Accountancy,
9 months ago