prove that tan² A - tan² B=sin² A - sin² B / cos² A cos² B
Answers
Answered by
5
Answer:
LHS:
tan2 A - tan2 B
Sin2 A / Cos2 A - Sin2 B / Cos2 B
Sin2 A.Cos2 B - Sin2 B.Cos2A / Cos2 A.Cos2 B
Sin2 A(1-Sin2 B) - Sin2 B (1- Sin2A) / Cos2 A.Cos2B
Sin2 A - Sin2 A.Sin2 B - Sin2 B +Sin2 B.Sin2 A / Cos2A.Cos2 B
Sin2 A - Sin2 B / Cos2 A.Cos2 B
LHS = RHS
Attachments:
Similar questions