Math, asked by Anonymous, 10 months ago

Prove that tan²∅ + cot²∅ + 2 = sec²∅ - cosec²∅..

Please solve this fast ...(◍•ᴗ•◍)❤
Don't give irrevalant answers..​

Answers

Answered by mukeshgour2911
16

Step-by-step explanation:

hope this is helpful for you

Attachments:
Answered by BrainlyPopularman
41

CORRECT QUESTION :

 \\  \:  \: { \bold{ prove \:  \: that \:  :  \: \tan {}^{2} ( \theta)  +  { \cot}^{2} ( \theta) + 2 =  { \sec}^{2} ( \theta) .  {cosec}^{2} ( \theta)}} \:  \:  \\

TO PROVE :

 \\  \:  \: { \bold{ \tan {}^{2} ( \theta)  +  { \cot}^{2} ( \theta) + 2 =  { \sec}^{2} ( \theta) .  {cosec}^{2} ( \theta)}} \:  \:  \\

SOLUTION :

Let's take L.H.S.

 \\  \:  \: { \bold{ =  \tan {}^{2} ( \theta)  +  { \cot}^{2} ( \theta) + 2 }} \:  \:  \\

• We should write this –

 \\  \:  \: { \bold{ =  \tan {}^{2} ( \theta)  +  { \cot}^{2} ( \theta) + 2(1) }} \:  \:  \\

• We know that –

 \\  \:  \: \longrightarrow { \bold{  \tan  ( \theta)   =  \dfrac{1}{  { \cot} ( \theta) }}} \:  \:  \\

 \\  \:  \: \longrightarrow { \bold{  \tan  ( \theta)  \times{ \cot} ( \theta) =  1}} \:  \:  \\

• So that –

 \\  \:  \: { \bold{ =  \tan {}^{2} ( \theta)  +  { \cot}^{2} ( \theta) + 2\tan( \theta). \cot( \theta)  }} \:  \:  \\

• Using identity –

 \\  \:  \: \longrightarrow \:  \:  { \bold{  {(a + b)}^{2} =  {a}^{2}   +  { b}^{2}  + 2ab }} \:  \:  \\

 \\  \:  \: { \bold{ =  [\tan  ( \theta)  +  { \cot}( \theta) ] {}^{2}  }} \:  \:  \\

• We know that –

 \\  \:  \: \longrightarrow { \bold{  \tan  ( \theta)   =  \dfrac{ \sin( \theta) }{  { \cos} ( \theta) }}} \:  \:  \\

 \\  \:  \: \longrightarrow { \bold{  \cot  ( \theta)   =  \dfrac{ \cos( \theta) }{  { \sin} ( \theta) }}} \:  \:  \\

• So that –

 \\  \:  \: { \bold{ =   \left[ \dfrac{ \sin( \theta) }{  { \cos} ( \theta) }  +  \dfrac{ \cos( \theta) }{  { \sin} ( \theta) } \right]^{2}  }} \:  \:  \\

 \\  \:  \: { \bold{ =   \left[ \dfrac{ \sin {}^{2} ( \theta) +  { \cos}^{2}( \theta)  }{  { \cos} ( \theta) . \sin( \theta) }   \right]^{2}  }} \:  \:  \\

 \\  \:  \: { \bold{ =   \left[ \dfrac{ 1  }{  { \cos} ( \theta) . \sin( \theta) }   \right]^{2}  }} \:  \:  \:  \:  \:  \:[  \:  \: \because \:  \: \sin {}^{2} ( \theta) +  { \cos}^{2}( \theta) = 1]  \:  \\

 \\  \:  \: { \bold{ =   \left[  \sec( \theta) .cosec( \theta) \right]^{2}   \:  \:  \:  \:  \:  \: \left[  \:  \: \because \:  \: \sec ( \theta)  =  \dfrac{1}{ \cos( \theta)}  \:  \: and \:  \:   { \cosec}( \theta) =  \dfrac{1}{ \sin( \theta) }  \right]  \:  }}\\

 \\  \:  \: { \bold{ =    \sec {}^{2} ( \theta) .cosec {}^{2} ( \theta)    \:  \:  \:   }}\\

 \\  \:  \: { \bold{ = R.H.S. \:  \:  \:  \:  \:  \:  (Hence \:  \: proved) }}\\


RvChaudharY50: Perfect. ❤️
Similar questions