Math, asked by jjamiu658, 2 months ago

Prove that tan²θ−sin²θ= sin⁴θsec²θ

Answers

Answered by subham4742
2

Step-by-step explanation:

here is ur answer

hope this helps you

Attachments:
Answered by SugarCrash
5

\bigstar \:\: \underline{\underline{\bf \red{To\:Prove\: :}}}

\longmapsto \tan^2 \theta -\sin^2 \theta= \sin^4 \theta\sec^2 \theta

\bigstar \:\: \underline{\underline{\bf \red{Solution\: :}}}

\blue \longmapsto \sf\tan^2\theta-\sin^2 = \sin^4\theta.\sec^2\theta

\large\bf L.H.S

\blue \longmapsto \tan^2 \theta-\sin^2 \theta

\red\bigstar\;\;\boxed{tan\theta=\frac{sin\theta}{\cos\theta}}

\implies \sf\dfrac{\sin^2\theta}{\cos^2\theta}-\sin^2\theta\\\\\\\implies\dfrac{\sin^2\theta-\sin^2\theta \cos^2\theta}{\cos^2\theta}\\\\\\\implies\dfrac{sin^2\theta(1- \cos^2\theta)}{\cos^2\theta}\\\\\red\bigstar\;\;\boxed{\sf\sin^2\theta=1-\cos^2\theta}\\\\\\\implies\dfrac{sin^2\theta(\sin^2\theta)}{\cos^2\theta}\\\\\\\implies \dfrac{\sin^4\theta}{\cos^2\theta} \\\\\\\implies \sin^4\theta.\dfrac{1}{\cos^2\theta}\\\\\\\red\bigstar\boxed{\sec\theta=\frac{1}{\cos\theta}}\\\\\\\implies \pink{\sin^4\theta\sec^2\theta }

\large\bf R.H.S

\;\;\;\;\;\;\;\;\;\;\; \large\huge\underline{\underline{\green{\bf \mathfrak{Hence\; proved}}}}

Similar questions