Math, asked by techawesome019, 1 month ago

Prove that Tan² theta - 1/ Cos²theta = -1 ​

Answers

Answered by FiercePrince
17

Given : tan² θ - 1 / cos² θ = - 1

⇢ tan² θ - 1 / cos² θ = - 1

⇢ tan² θ - sec ² θ = - 1 ⠀⠀⠀⠀⠀⠀⠀∵ 1 / cos²θ = sec²θ

⇢ – ( sec² θ - tan ² θ ) = - 1 ⠀⠀⠀⠀∵ sec² θ - tan² θ = 1

⇢ – 1 = – 1

  • Hence Verified !

━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀ADDITIONAL INFORMATION :

Trigonometric Identities :

  • sin² θ + cos² θ = 1
  • 1 - cos² θ = sin² θ
  • 1 - sin² θ = cos² θ
  • 1 + cot² θ = cosec² θ
  • cosec² θ - cot² θ = 1
  • cosec²θ - 1 = cot² θ
  • sec² θ - tan² θ = 1
  • tan²θ = sec² θ - 1
Answered by DeepikaPolisetty
0

Step-by-step explanation:

Tan² theta = sin² theta/Cos²theta

LHS

Tan² theta - 1/ Cos²theta

=sin² theta/Cos²theta - 1/ Cos²theta

=(sin² theta - 1)/Cos²theta

(sin² theta + Cos²theta = 1)

(sin² theta - 1 = -Cos²theta)

-Cos²theta/Cos²theta

=-1

=RHS

Similar questions