Math, asked by sana1919, 6 months ago

prove that tan² theta/ 1+tan²theta + cot²theta/ 1+cot²theta =1​

Answers

Answered by aryan073
8

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

\rm{\bullet {Prove that,  \dfrac{tan^2\theta}{1+tan^2\theta} +\dfrac{cot^2 \theta}{1+cot^2\theta}=1}}

\huge\red{\sf{\underline{\underline{Required \: Answer}}}}

 \:  \longrightarrow \displaystyle \sf \:  \frac{ {tan}^{2} x}{1 +  {tan}^{2}x }  +  \frac{ {cot}^{2}x }{1 +  {cot}^{2} x}

 \longrightarrow \displaystyle \sf \:  \frac{ \frac{ {sin}^{2}x }{ {cos}^{2}x } }{1 +  \frac{ {sin}^{2}x }{ {cos}^{2}x } }  +  \frac{ \frac{ {cos}^{2}x }{ {sin}^{2}x } }{1 +  \frac{ {cos}^{2}x }{ {sin}^{2} x} }

 \longrightarrow \displaystyle \sf \:  \frac{ \frac{ {sin}^{2}x }{ {cos}^{2}x } }{ \frac{ {cos}^{2}x +  {sin}^{2}x }{ {cos}^{2}x } }  +  \frac{ \frac{ {cos}^{2} x}{ {sin}^{2} x} }{  \frac{ {sin}^{2}x +  {cos}^{2}x  }{ {sin}^{2} x}  }

 \longrightarrow \displaystyle \sf \:  \frac{ \frac{ {sin}^{2}x}{ \cancel{ {cos}^{2}x} } }{ \frac{ {cos}^{2} x +  {sin}^{2} x}{ \cancel {cos}^{2}x } }  +  \frac{ \frac{ {cos}^{2}x }{ \cancel {sin}^{2}x} }{ \frac{ {sin}^{2}x +  {cos}^{2}x  }{ \cancel {sin}^{2} x} }

  \\ \longrightarrow \displaystyle \sf \:  \frac{ {sin}^{2}x }{ {cos}^{2}x +  {sin}^{2}x  }  +   \frac{ {cos}^{2}x }{ {sin}^{2}x +  {cos}^{2}x  }

 \longrightarrow \displaystyle \sf \:  \frac{ {sin}^{2}x +  {cos}^{2}  x}{ {sin}^{2}x +  {cos}^{2}x }

Properties :

 \bf{ \bullet{  {sin}^{2} x +  {cos}^{2} x = 1}}

 \bf{ \bullet{ \:  {cos}^{2} x = 1 - {sin}^{2} x}}

 \longrightarrow \displaystyle \sf \:  \frac{ {sin}^{2}x +  {cos}^{2}x  }{ {sin}^{2}x +  {cos}^{2}x  }  =  \frac{1}{1}  = 1

 \longrightarrow \displaystyle {\ \boxed{ \bigstar \:  \:  \pink{ \underline{ \bf{the \: answer \: will \: be \: 1}}}}}

\green{▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬}

\red{■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□}

Similar questions