Math, asked by ManishGogoi, 1 year ago

Prove That
(tan20/cosec70)^2 + (cot20/sec70)^2 + 2 tan15tan37tan53tan60tan75 = 1

Answers

Answered by Joshuawoskk
8
Hope the image helps..
Attachments:

ManishGogoi: No . U dont have to multiply
ManishGogoi: instead u should find squares and add up
ManishGogoi: see the question
Answered by Missmanu2612
0

\Large{\underline{\underline{\tt{\purple{Hello !!}}}}}

 = ( \frac{tan20}{cosec70} ) {}^{2} + ( \frac{cot20}{sec70}  ) {}^{2}  + 2tan15.tan60.tan \: 75

 = ( \frac{ \frac{sin20}{cos \: 20} }{ \frac{1}{sin 70} }  ) {}^{2}  + ( \frac{ \frac{cos20}{sin20} }{ \frac{1}{cos \: 70} } ) {}^{2}  + 2 \: tan \: 15.tan \: 60. \: tan \: (90 - 15)

 = ( \frac{sin \: 20}{cos \: 20 }  \times sin 70) \:  {}^{2}  \:  + ( \frac{cos \: 20}{sin \: 20}  \times cos \: 70) + 2 \: tan \: 15.tan \: 60.cot \: 15

 = ( \frac{sin20}{cos \: 20}  \times cos \: 20) {}^{2}  + (  \frac{cos20}{sin20}   \times sin20) {}^{2}  + 2.tan.60(1)

 = sin {}^{2} 20 + cos \:  {}^{2} 20 + 2 \: tan \: 60

 = 1 + 2( \sqrt{3} )

 = 1 + 2 \sqrt{3}

Brainliest .. !! ❤

Similar questions