prove that : tan20 tan40 tan80=tan 60
Answers
HELLO DEAR,
TO PROVE :-
tan20 * tan40 * tan80 = tan60
LH.S = 2sin20sin40sin80/2cos20cos40cos80
= [{cos(20 - 40) - cos(20 + 40)} sin80]/[{cos(20 + 40) + cos(20 - 40)}cos80]
= {(cos20 - cos60)sin80} / {(cos60 + cos20)cos80}
= {2cos20sin80 -2(1/2)sin80} / {2(1/2)cos80
+ 2cos20cos80}
divide and multiply by "2"
›››››››››››››››››››››››››[as cos60° = 1/2]
= {sin(20 + 80) - sin(20 - 80) - sin80} / {cos80 + cos(20 + 80) + cos(20 - 80)}
= (sin100 + sin60 - sin80) / (cos80 + cos100 + cos60)
= {2cos(100 + 80)/2 sin(100 - 80)/2 + sin60} / {2cos(100 + 80)/2 cos(100 - 80)/2 + cos60}
= (2cos90sin10 + sin60) / (2cos90cos10 + cos60)
›››››››››››››››››››››››››[cos(90) = 0]
= sin60 / cos60
= tan60
HENCE, tan20 tan40 tan80 = tan 60
I HOPE ITS HELP YOU DEAR,
THANKS
Following is the proof;
tan20 * tan40 * tan80 = tan60
LH.S = 2sin20sin40sin80/2cos20cos40cos80
= [{cos(20 - 40) - cos(20 + 40)} sin80]/[{cos(20 + 40) + cos(20 - 40)}cos80]
= {(cos20 - cos60)sin80} / {(cos60 + cos20)cos80}
= {2cos20sin80 -2(1/2)sin80} / {2(1/2)cos80+ 2cos20cos80}
divide and multiply by "2"
[as cos60° = 1/2]
= {sin(20 + 80) - sin(20 - 80) - sin80} / {cos80 + cos(20 + 80) + cos(20 - 80)}
= (sin100 + sin60 - sin80) / (cos80 + cos100 + cos60)
= {2cos(100 + 80)/2 sin(100 - 80)/2 + sin60} / {2cos(100 + 80)/2 cos(100 - 80)/2 + cos60}
= (2cos90sin10 + sin60) / (2cos90cos10 + cos60)
[cos(90) = 0]
= sin60 / cos60
= tan60
Therefore, tan20 tan40 tan80 = tan 60
I hope you are satisfied with the answer.
Thanks