prove that tan20 .tan40.tan80=tan60.ta
Answers
Answered by
2
L.H.S. is tan 40 * tan 80* tan 20
=(sin 40 *sin 80) * sin 20 /(cos 40 *cos 80 ) cos 20
Now, multiplying numerator and denominator by 2, we get
=(2*sin 40*sin 80) *sin 20 /(2 cos 40*cos 80) cos 20]
=(cos 40- cos 120)*sin 20/( (cos 120+ cos 40) cos 20
=(2 cos 40 +1) sin 20 /(2 cos 40-1) cos 20
=(2 cos 40*sin 20 +sin 20) /(2 cos 40 cos 20 -cos 20)
=(sin 60 -sin 20 +sin 20)/ (cos 60+sin 20-sin 20)
= sin 60/cos 60
=tan 60
L.H.S. = R.H.S.
=(sin 40 *sin 80) * sin 20 /(cos 40 *cos 80 ) cos 20
Now, multiplying numerator and denominator by 2, we get
=(2*sin 40*sin 80) *sin 20 /(2 cos 40*cos 80) cos 20]
=(cos 40- cos 120)*sin 20/( (cos 120+ cos 40) cos 20
=(2 cos 40 +1) sin 20 /(2 cos 40-1) cos 20
=(2 cos 40*sin 20 +sin 20) /(2 cos 40 cos 20 -cos 20)
=(sin 60 -sin 20 +sin 20)/ (cos 60+sin 20-sin 20)
= sin 60/cos 60
=tan 60
L.H.S. = R.H.S.
Similar questions