Math, asked by pranav9354, 1 year ago

prove that tan25tan15+tan15tan50+tan25tan50=1​

Answers

Answered by shadowsabers03
12

We have to prove that,

\tan25\textdegree\cdot\tan15\textdegree+\tan15\textdegree\cdot\tan50\textdegree+\tan25\textdegree\cdot\tan50\textdegree=1

Okay, there are three proofs which are similar to each other!

Proof no. 1 :-

Taking LHS,

\tan25\textdegree\cdot\tan15\textdegree+\tan15\textdegree\cdot\tan50\textdegree+\tan25\textdegree\cdot\tan50\textdegree

Taking  tan 15°  as common from first two terms,

\tan15\textdegree(\tan25\textdegree+\tan50\textdegree)+\tan25\textdegree\cdot\tan50\textdegree

According to,

\tan(A+B)=\dfrac{\tan A+\tan B}{1-\tan A\cdot\tan B}\\ \\ \\ \Longrightarrow\ \ \tan A+\tan B=\tan(A+B)(1-\tan A\cdot\tan B)

we get,

\tan25\textdegree\cdot\tan50\textdegree=\tan(25\textdegree+50\textdegree)(1-\tan25\textdegree\cdot\tan50\textdegree)\\ \\ \tan25\textdegree\cdot\tan50\textdegree=\tan75\textdegree\ (1-\tan25\textdegree\cdot\tan50\textdegree).

So,

\tan15\textdegree(\tan25\textdegree+\tan50\textdegree)+\tan25\textdegree\cdot\tan50\textdegree\\ \\ \\ \Longrightarrow\ \tan15\textdegree\cdot\tan75\textdegree\ (1-\tan25\textdegree\cdot\tan50\textdegree)+\tan25\textdegree\cdot\tan50\textdegree\\ \\ \\ \Longrightarrow\ \tan15\textdegree\cdot\tan(90\textdegree-15\textdegree)\ (1-\tan25\textdegree\cdot\tan50\textdegree)+\tan25\textdegree\cdot\tan50\textdegree

\Longrightarrow\ \tan15\textdegree\cdot\cot15\textdegree\ (1-\tan25\textdegree\cdot\tan50\textdegree)+\tan25\textdegree\cdot\tan50\textdegree\\ \\ \\ \Longrightarrow\ 1(1-\tan25\textdegree\cdot\tan50\textdegree)+\tan25\textdegree\cdot\tan50\textdegree\\ \\ \\ \Longrightarrow\ 1-\tan25\textdegree\cdot\tan50\textdegree+\tan25\textdegree\cdot\tan50\textdegree\\ \\ \\ \Longrightarrow\ 1\\ \\ \\ \Longrightarrow\ \text{RHS}

Proof no. 2 :-

Taking LHS,

\tan25\textdegree\cdot\tan15\textdegree+\tan15\textdegree\cdot\tan50\textdegree+\tan25\textdegree\cdot\tan50\textdegree

Taking  tan 50°  as common from last two terms,

\tan25\textdegree\cdot\tan15\textdegree+\tan50\textdegree(\tan15\textdegree+\tan25\textdegree)

According to,

\tan(A+B)=\dfrac{\tan A+\tan B}{1-\tan A\cdot\tan B}\\ \\ \\ \Longrightarrow\ \ \tan A+\tan B=\tan(A+B)(1-\tan A\cdot\tan B)

we get,

\tan25\textdegree\cdot\tan15\textdegree=\tan(25\textdegree+15\textdegree)(1-\tan25\textdegree\cdot\tan15\textdegree)\\ \\ \tan25\textdegree\cdot\tan15\textdegree=\tan40\textdegree\ (1-\tan25\textdegree\cdot\tan15\textdegree).

So,

\tan25\textdegree\cdot\tan15\textdegree+\tan50\textdegree\ (\tan15\textdegree+\tan25\textdegree)\\ \\ \\ \Longrightarrow\ \tan25\textdegree\cdot\tan15\textdegree+\tan50\textdegree\cdot\tan40\textdegree\ (1-\tan15\textdegree\cdot\tan25\textdegree)\\ \\ \\ \Longrightarrow\ \tan25\textdegree\cdot\tan15\textdegree+\tan50\textdegree\cdot\tan(90\textdegree-40\textdegree)(1-\tan15\textdegree\cdot\tan25\textdegree)

\Longrightarrow\ \tan25\textdegree\cdot\tan15\textdegree+\tan50\textdegree\cdot\cot40\textdegree\ (1-\tan15\textdegree\cdot\tan25\textdegree)\\ \\ \\ \Longrightarrow\ \tan25\textdegree\cdot\tan15\textdegree+1(1-\tan15\textdegree\cdot\tan25\textdegree)\\ \\ \\ \Longrightarrow\ \tan25\textdegree\cdot\tan15\textdegree+1-\tan15\textdegree\cdot\tan25\textdegree\\ \\ \\ \Longrightarrow\ 1\\ \\ \\ \Longrightarrow\ \text{RHS}

Proof no. 3 :-

Taking LHS,

\tan25\textdegree\cdot\tan15\textdegree+\tan15\textdegree\cdot\tan50\textdegree+\tan25\textdegree\cdot\tan50\textdegree

Taking  tan 25°  as common from first and third terms,

\tan25\textdegree(\tan15\textdegree+\tan50\textdegree)+\tan15\textdegree\cdot\tan50\textdegree

According to,

\tan(A+B)=\dfrac{\tan A+\tan B}{1-\tan A\cdot\tan B}\\ \\ \\ \Longrightarrow\ \ \tan A+\tan B=\tan(A+B)(1-\tan A\cdot\tan B)

we get,

\tan15\textdegree\cdot\tan50\textdegree=\tan(15\textdegree+50\textdegree)(1-\tan15\textdegree\cdot\tan50\textdegree)\\ \\ \tan15\textdegree\cdot\tan50\textdegree=\tan65\textdegree\ (1-\tan15\textdegree\cdot\tan50\textdegree).

So,

\tan25\textdegree(\tan15\textdegree+\tan50\textdegree)+\tan15\textdegree\cdot\tan50\textdegree\\ \\ \\ \Longrightarrow\ \tan25\textdegree\cdot\tan65\textdegree\ (1-\tan15\textdegree\cdot\tan50\textdegree)+\tan15\textdegree\cdot\tan50\textdegree\\ \\ \\ \Longrightarrow\ \tan25\textdegree\cdot\tan(90\textdegree-25\textdegree)(1-\tan15\textdegree\cdot\tan50\textdegree)+\tan15\textdegree\cdot\tan50\textdegree

\Longrightarrow\ \tan25\textdegree\cdot\cot25\textdegree\ (1-\tan15\textdegree\cdot\tan50\textdegree)+\tan15\textdegree\cdot\tan50\textdegree\\ \\ \\ \Longrightarrow\ 1(1-\tan15\textdegree\cdot\tan50\textdegree)+\tan15\textdegree\cdot\tan50\textdegree\\ \\ \\ \Longrightarrow\ 1-\tan15\textdegree\cdot\tan50\textdegree+\tan15\textdegree\cdot\tan50\textdegree\\ \\ \\ \Longrightarrow\ 1\\ \\ \\ \Longrightarrow\ \text{RHS}

Hence Proved!


AbhijithPrakash: Awesome...!!!!
Similar questions