Math, asked by Olive55, 10 hours ago

prove that tan²A(1+cot²A)/(1+tan²A) = 1​

Answers

Answered by OtakuSama
14

 \\  \large{ \underline { \underline{ \textbf{Question}}}}

  \\  \tt{ \ratio{ \rightarrow{Prove \: that -  {tan}^{2} A \:  \dfrac{(1 +  {cot}^{2}A) }{(1 +  {tan}^{2}A) }  }}}

 \\  \large{ \underline { \underline{ \textbf{Required \: Answer}}}}

   \\  \underline{ \underline{ \sf{  \frak{Formula \: Needed \ratio  - }}}}

  •  \sf{ tan\theta  =  \dfrac{sin \theta}{cos \theta}}

  •  \sf{cot \theta =  \dfrac{cos \theta}{sin \theta}}

 \\ \underline{ \underline{ \sf{  \frak{Solution \ratio  - }}}}

 \\  \sf{ \implies{\green{L.H.S.}}}

 \\  \bold{  {tan}^{2} A \:  \dfrac{(1 +  {cot}^{2}A) }{(1 +  {tan}^{2}A) }}

 \\ \tt{ \implies{ \dfrac{ {sin}^{2}A }{ {cos}^{2}A }  \times  \dfrac{1 +  \dfrac{ {cos}^{2} A}{ {sin}^{2} A} }{1 +  \dfrac{ {sin}^{2} A}{ {cos}^{2}A} }}}

 \\ \tt{ \implies{ \dfrac{ {sin}^{2}A }{ {cos}^{2}A }  \times   \dfrac{ \dfrac{ {sin}^{2}A +  {cos}^{2}A}{ {cos}^{2}A } }{  \dfrac{ {cos}^{2}A +  {sin}^{2}A  }{ {sin}^{2}A } }}}

\\ \tt{ \implies{ \dfrac{  \cancel{{sin}^{2}A }}{  \cancel{{cos}^{2}A} }  \times    \dfrac{ \cancel{( {sin}^{2}A +   {cos}^{2} A)} }{  \cancel{{sin}^{2}A }} } \times \dfrac {  \cancel{{cos}^{2}A } }{  \cancel{({sin}^{2}A+  {cos}^{2}A)}} }

 \\  \tt{ \implies{ \red{1}}}

 \\  \sf{ \implies{ \green{R.H.S.}}}

 \\  \rm{ \therefore \:  \tt{  {tan}^{2} A \:  \dfrac{(1 +  {cot}^{2}A) }{(1 +  {tan}^{2}A)}  = 1 \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed{ \pmb{Proved!!}}}}}

Answered by llAestheticKingll91
4

Step-by-step explanation:

\begin{gathered} \\ \large{ \underline { \underline{ \textbf{Question}}}}\end{gathered}

Question

\begin{gathered} \\ \tt{ \ratio{ \rightarrow{Prove \: that - {tan}^{2} A \: \dfrac{(1 + {cot}^{2}A) }{(1 + {tan}^{2}A) } }}}\end{gathered}

:→

\begin{gathered} \\ \large{ \underline { \underline{ \textbf{Required \: Answer}}}}\end{gathered}

\begin{gathered} \\ \underline{ \underline{ \sf{ \frak{Formula \: Needed \ratio - }}}}\end{gathered}

:−

\

\begin{gathered}\\ \tt{ \implies{ \dfrac{ \cancel{{sin}^{2}A }}{ \cancel{{cos}^{2}A} } \times \dfrac{ \cancel{( {sin}^{2}A + {cos}^{2} A)} }{ \cancel{{sin}^{2}A }} } \times \dfrac { \cancel{{cos}^{2}A } }{ \cancel{({sin}^{2}A+ {cos}^{2}A)}} }\end{gathered}

Similar questions