Math, asked by Anonymous, 1 year ago

prove that tan2A=2tanA/1-tan^2A​

Answers

Answered by ihrishi
3

Step-by-step explanation:

tan 2A \:  =  \frac{2tan A}{1 -  {tan}^{2}A }  \\ LHS = tan 2A \\  = tan (A \:  + A) \\  =  \frac{tan A  + tan A }{1 -tan A  \times  tan A }  \\  =  \frac{2tan A }{1 -  {tan}^{2} A}  \:  \\  = RHS \\ thus \: proved \:

Answered by Abhiroop12
2

Answer:

<b><i><body bgcolor=white><mrquee direction="up"><font color=black></b></i>

tan (2A) = sin(2A) / cos(2A)

= 2 sinA cos A / (cos^2 A - sin^2 A)

Divide numerator and denominator by cos^2 A...

= 2 (sinA / cosA) / (1-[sinA / cosA]^2)

= 2 tanA / (1-tan^2 A)

Similar questions