Math, asked by sumijohn003, 1 year ago

prove that tan²A-sin²A=tan²A•sin²A

Answers

Answered by abhi875
8
= (sin²A | cos²A) - sin²A 
= (sin²A - cos²A • sin²A) | cos²A 
= sin²A [1-cos²A] | cos²A 
= Sin²A [sin²A] | cos²A 
= Sin²A [sin²A | cos²A] 
= sin²A • tan²A = RHS

abhi875: mark as brainlist plz
Answered by BrainlyBlockBusterBB
146

 \huge \underline \mathfrak\red{Question}

prove that tan²A-sin²A=tan²A•sin²A

______________________________________

\large \underline \green{ \rm \: L.H.S}= \tan²(A) -\sin²(A)

\large \underline \green{ \rm \: R.H.S}= \tan²(A) × \sin²(A)

_____________________________________

\large \underline{ \rm \: Now \: let's  \: prove}

\large \underline \green{ \rm \: L.H.S}:-

 \dfrac{ \ \sin ²(A) }{ \cos²(A) } = \tan²(A)

 →\dfrac{ \sin²(A) }{ \cos²(A) } - \sin²(A)

→ \dfrac{ \sin²(A)- \cos²(A)× \sin²(A)   }{ \cos²(A) }

→ \dfrac{ \sin²A[1- \cos²(A)]  }{ \cos²(A) }

\boxed { \orange{1 -  \cos²(A) = \sin²(A) }}

→ \dfrac{ \sin²(A)[ \sin²(A)]  }{ \cos²(A) }

→ \sin²(A)   \:  \:   [   \frac{ \sin²(A) }{ \cos²(A) } ]

\boxed { \orange{→ \frac{ \sin²(A) }{ \cos²(A) } =  \tan²(A) }}

 \sin²(A) ×  \tan²(A) =\large \underline \green{ \rm \: R.H.S}

\large \underline \green{ \rm \: L.H.S=R.H.S}

\large \underline \green{ \rm \: Hence  \: proved}

______________________________________

 \rm \blue{@BrainlyBlockBusterBB}

Similar questions