Math, asked by parvathamadityakumar, 10 months ago

prove that tan2a_tan2b = cos2b_cos2a÷cos2b×cos2a= sin2a_since ÷cos2b×cos2a.( 2 is a square is tan, cos, sin. ​

Answers

Answered by harendrachoubay
1

Thus, \tan^2A-\tan^2 B=\dfrac{\cos^2B-\cos^2A}{\cos^2B\cos^2A} =\dfrac{\sin^2A-\sin^2B}{\cos^2B\cos^2A}, proved.

Step-by-step explanation:

To prove that, \tan^2A-\tan^2 B=\dfrac{\cos^2B-\cos^2A}{\cos^2B\cos^2A} =\dfrac{\sin^2A-\sin^2B}{\cos^2B\cos^2A}.

L.H.S. = \tan^2A-\tan^2 B

= \dfrac{\sin^2A}{\cos^2A} -\dfrac{\sin^2B}{\cos^2B}

Taking LCM of numerator, we get

= \dfrac{\sin^2A\cos^2B-\sin^2B\cos^2A}{\cos^2A\cos^2B}}

Using the trigonometric identity,

\sin^2A+\cos^2A=1

= \dfrac{(1-\cos^2 A)\cos^2B-(1-\cos^2 B)\cos^2A}{\cos^2A\cos^2B}}

= \dfrac{\cos^2B-\cos^2 A\cos^2B-\cos^2A+\cos^2 A\cos^2B}{\cos^2A\cos^2B}}

= \dfrac{\cos^2B-\cos^2A}{\cos^2A\cos^2B}}

= M.H.S.

= \dfrac{1-\sin^2B-(1-\sin^2A)}{\cos^2A\cos^2B}}

= \dfrac{1-\sin^2B-1+\sin^2A}{\cos^2A\cos^2B}}

= \dfrac{\sin^2A-\sin^2B}{\cos^2A\cos^2B}}

= R.H.S., proved.

Thus, \tan^2A-\tan^2 B=\dfrac{\cos^2B-\cos^2A}{\cos^2B\cos^2A} =\dfrac{\sin^2A-\sin^2B}{\cos^2B\cos^2A}, proved.

Similar questions