prove that tan²A-tan²B=sin²A-sin²B/cos²A.cos²B
Answers
Answered by
47
tan²x = sin²x/cos²x, and sin²x + cos²x = 1
tan²A - tan²B = sin²A/cos²A - sin²B/cos²B
= sin²A cos²B/cos²A cos²B - sin²B cos²A/cos²A cos²B
= sin²A(1-sin²B)/cos²A cos²B - sin²B(1-sin²A)/cos²A cos²B
= (sin²A - sin²Asin²B)/cos²A cos²B - (sin²B - sin²Asin²B)/cos²A cos²B
= (sin²A - sin²Asin²B) - (sin²B - sin²Asin²B)/cos²A cos²B
= (sin²A - sin²Asin²B - sin²B + sin²Asin²B)/cos²A cos²B
= (sin²A - sin²B)/cos²A cos²B
i think u like it
tan²A - tan²B = sin²A/cos²A - sin²B/cos²B
= sin²A cos²B/cos²A cos²B - sin²B cos²A/cos²A cos²B
= sin²A(1-sin²B)/cos²A cos²B - sin²B(1-sin²A)/cos²A cos²B
= (sin²A - sin²Asin²B)/cos²A cos²B - (sin²B - sin²Asin²B)/cos²A cos²B
= (sin²A - sin²Asin²B) - (sin²B - sin²Asin²B)/cos²A cos²B
= (sin²A - sin²Asin²B - sin²B + sin²Asin²B)/cos²A cos²B
= (sin²A - sin²B)/cos²A cos²B
i think u like it
Answered by
2
Answer:
tan²x = sin²x/cos²x, and sin²x + cos²x = 1
tan²A - tan²B = sin²A/cos²A - sin²B/cos²B
= sin²A cos²B/cos²A cos²B - sin²B cos²A/cos²A cos²B
= sin²A(1-sin²B)/cos²A cos²B - sin²B(1-sin²A)/cos²A cos²B
= (sin²A - sin²Asin²B)/cos²A cos²B - (sin²B - sin²Asin²B)/cos²A cos²B
= (sin²A - sin²Asin²B) - (sin²B - sin²Asin²B)/cos²A cos²B
= (sin²A - sin²Asin²B - sin²B + sin²Asin²B)/cos²A cos²B
= (sin²A - sin²B)/cos²A cos²B
Similar questions