Prove that tan²theta + cot²theta +2 = sec²theta+cosec²theta
Answers
Answered by
3
To prove :
2 sec²Φ - sec⁴Φ - 2 cosec² Φ + cosec⁴Φ =cot⁴Φ - tan⁴Φ
Proof :
here remember that,
1 - tan²Φ = sec²Φ And
1 - cot²Φ = cosec² Φ
__________________________
LHS = 2 sec²Φ - sec⁴Φ- 2 cosec ² Φ + cosec⁴ Φ
=)) sec²Φ ( 2 - sec²Φ ) - cosec²Φ (2 - cosec² Φ )
=)) sec²Φ ( 1 +( 1 - sec²Φ) ) - cosec²Φ ( 1 + (1 - cosec²Φ))
=)) sec²Φ ( 1 + ( -tan²Φ )) - cosec²Φ (1 + (- cot²Φ ))
=)) ( 1+ tan²Φ ) (1 - tan²Φ ) - (( 1 + cot²Φ )(1 - cot² Φ ))
=)) ((1)⁴ - (tan⁴)) -((1)⁴ - (cot⁴))
=)) ( 1 - tan⁴ - 1 + cot⁴ )
=)) -tan⁴ + cot⁴
=)) cot⁴ - tan⁴
=)) RHS
Hence proved
Hope this helps☺✌
Similar questions