Math, asked by 9912559168s, 4 months ago

Prove that tan²theta + cot²theta +2 = sec²theta+cosec²theta

Answers

Answered by gurmanpreet1023
3

\huge{\boxed{\mathfrak\pink{answer}}}

To prove :

2 sec²Φ - sec⁴Φ - 2 cosec² Φ + cosec⁴Φ =cot⁴Φ - tan⁴Φ

Proof :

here remember that,

1 - tan²Φ = sec²Φ And

1 - cot²Φ = cosec² Φ

__________________________

LHS = 2 sec²Φ - sec⁴Φ- 2 cosec ² Φ + cosec⁴ Φ

=)) sec²Φ ( 2 - sec²Φ ) - cosec²Φ (2 - cosec² Φ )

=)) sec²Φ ( 1 +( 1 - sec²Φ) ) - cosec²Φ ( 1 + (1 - cosec²Φ))

=)) sec²Φ ( 1 + ( -tan²Φ )) - cosec²Φ (1 + (- cot²Φ ))

=)) ( 1+ tan²Φ ) (1 - tan²Φ ) - (( 1 + cot²Φ )(1 - cot² Φ ))

=)) ((1)⁴ - (tan⁴)) -((1)⁴ - (cot⁴))

=)) ( 1 - tan⁴ - 1 + cot⁴ )

=)) -tan⁴ + cot⁴

=)) cot⁴ - tan⁴

=)) RHS

Hence proved

Hope this helps☺✌

Similar questions
Math, 2 months ago