Math, asked by tscs202009parvathi, 1 month ago

Prove that tan3 θ/1 + tan2 θ + cot3 θ/1 + cot2θ = sec θ. cosec θ – 2 sin θ.cos θ ​

Answers

Answered by CherryXPlum
0

Step-by-step explanation:

L.H.S. = tan3 θ/1 + tan2 θ + cot3 θ/1 + cot2 θ

= tan3 θ/sec2 θ + cot3 θ/cosec2 θ

= sin3 θ/cos3 θ × cos2 θ + cos3 θ/sin3 θ × sin2 θ

= sin3 θ/cos θ + cos3 θ/sin θ = sin4 θ + cos4 θ/sin θ.cos θ

= [sin2 θ + cos2 θ]2 – 2 sin2 θ. cos2 θ/sin θ.cos θ

= [(1)2 – 2 sin2 θ.cos2 θ]/sin θ.cos θ

= 1 – 2 sin2 θ.cos2 θ/sin θ.cos θ

= (1 – 2 sin2 θ.cos2 θ)/sin θ.cos θ

= 1/sin θ.cos θ = 2 sin2 θ.cos2 θ/sin θ.cos θsec

=θ.cosec θ – 2 sin θ.cos θ

= R.H.S.

Hence proved.

Mark me as brainliest....

Answered by babitakumarijmi
0

write again dude I can't understand that question ..

Similar questions