prove that tan³θ/1+tan²θ+cot³θ/1+cot²θ=secθcosecθ-2sinθcosθ.
Answers
Answered by
3
Step-by-step explanation:
tan³A/1+tan²A + cot³A/1+cot²A
=tan³A/sec²A + cot³A/cosec²A
=sin³A/cosA + cos³A/sinA
=(sin⁴A+cos⁴A)/sinAcosA
={sin²A+cos²A}²-2sin²Acos²A/sinAcosA
=1-2sin²Acos²A/sinAcosA
=secAcosecA-2sinAcosA
Attachments:
Similar questions
Math,
6 months ago
Science,
6 months ago
Social Sciences,
6 months ago
Math,
11 months ago
Social Sciences,
11 months ago
English,
1 year ago
Computer Science,
1 year ago
Math,
1 year ago