Math, asked by TwinkleKhurana, 1 year ago

Prove that tan³ theta / 1+tan² theta +cot³ theta/1 + cot² theta
= sec theta cosec theta - 2 sin theta cos theta

Answers

Answered by sandy1816
19

Step-by-step explanation:

your answer attached in the photo

and thankyou

Attachments:
Answered by lublana
5

Answer with Step-by-step explanation:

Given:

LHS

\frac{tan^3\theta}{1+tan^2\theta}+\frac{cot^3\theta}{1+cot^2\theta}

We know that

1+tan^2\theta=sec^2\theta=\frac{1}{cos^2\theta}

1+cot^2\theta=cosec^2\theta=\frac{1}{sin^2\theta}

tan\theta=\frac{sin\theta}{cos\theta}

cot\theta=\frac{cos\theta}{sin\theta}

Using the formula

\frac{sin^3\theta}{cos^3\theta\times \frac{1}{cos^2\theta}}+\frac{cos^3\theta}{sin^3\theta\times \frac{1}{sin^2\theta}}

\frac{sin^3\theta}{cos\theta}+\frac{cos^3\theta}{sin\theta}

\frac{sin^4\theta+cos^4\theta}{sin\theta cos\theta}

\frac{sin^4\theta+cos^4\theta+2sin^2\theta cos^2\theta-2sin^2\theta cos^2\theta}{sin\theta cos\theta}

\frac{(sin^2\theta+cos^2\theta)^2-2sin^2\theta cos^2\theta}{sin\theta cos\theta}

By using

(sin^2\theta +cos^2\theta)^2=sin^4\theta+cos^4\theta+2sin^2\theta cos^2\theta

\frac{1-2sin^2\theta cos^2\theta}{sin\theta cos\theta}

By using the formula

sin^2\theta+cos^2\theta=1

\frac{1}{sin\theta cos\theta}-\frac{2sin^2\theta cos^2\theta}{sin\theta cos\theta}

sec\theta cosec\theta-2sin\theta cos\theta

Hence, proved

#Learn more:

https://brainly.in/question/15870295

Similar questions